Table of Contents

CYCLIC PERFORMANCE OF UNSTIFFENED STEEL PANEL SHEAR WALLS
SHAKING TABLE TESTS OF RC WALL BUILDING MODELS HAVING BOTTOM SOFT STORIES9 Han-Seon LEE and Dong-Woo KO
A STUDY ON THE SEISMIC FORCE RESISTING MECHANISM OF A MULTI-STORY SHEAR WALL SYSTEM CONSIDERING THE INTERACTION BETWEEN WALL, SLAB, FOUNDATION BEAM, AND PILE ELEMENTS
PUSHOVER TEST OF MULTISTORY BUILDING STRUCTURES USING PARTIAL SPECIMEN29 So-Hoon CHO and Dong-Guen LEE
DYNAMIC GRAVITY LOAD COLLAPSE EXPERIMENTS OF LOW-DUCTILITY RC COLUMNS AND PRELIMINARY NUMERICAL SIMULATOIN
SHEAR STRENGTH DETERIORATION OF REINFORCED CONCRETE MEMBERS SUBJECTED TO CYCLIC LOADING
ESTIMATION OF RESTORING FORCE CHARACTERISTICS IN THE INTERIOR BEAM-AND-COLUMN SUBASSEMBLAGES OF R/C FRAMES61 Masaru TERAOKA, Kazuya HAYASHI, Satoshi SASAKI, and Naoki TAKAMORI
DEFORMABILITY of NON-FLEXURAL MEMBERS73 Sung-Gul Hong
SEISMIC EVALUATION OF EXISTING REINFORCED CONCRETE BUILDING —SHAKING TABLE TESTS AND PUSHOVER ANALYSIS
AN EXPERT SYSTEM FOR PRELIMINARY ASEISMIC CAPACITY ESTIMATION OF TRADITIONAL SCHOOL CLASSROOM BUILDINGS USING CASE-BASED REASONING
Shang-Hsien HSIEH and Pin-Pin TENG
REAL TIME CONTROL PERFORMANCE VERIFICATION OF A COMMUNICATION TOWER

BUILDING STRUCTURES WITH KNEE BRACE DAMPERS113 Keiichiro SUITA, Kazuo INOUE, Yuji KOETAKA, Masakazu ANDO, and Yasuki BYAKUNO
EXPERIMENTAL STUDY ON THE PERFORMANCE OF THE ROTATIONAL FRICTION DAMPER SYSTEM123 Ji-Hun Park, Sang-Hyun Lee, Hyoung-Seop Kim, and Kyung-Won Min
A DESIGN METHOD FOR FLEXURAL STRENGTH AND CURVATURE DUCTILITY OF SRC BEAM SECTIONS133 Cheng-Cheng CHEN and Chao-Lin CHENG
PREDICTION OF LATERAL CAPACITY OF CONCRETE-FILLED CARBON COMPOSITE COLUMNS
EXPERIMENTAL INVESTGATIONS ON AXIAL BEHAVIOR OF LARGE-SCALE CONCRETE COLUMNS CONFINED BY CARBON COMPOSITE TUBES153 Hee-Cheul KIM, Won-Kee HONG, Kyung-Hun LEE, Jin-Young PARK, and Dong-Hyeok KIM
SEISMIC RESPONSE SPECTRA CONSIDERING THE EFFECT OF THE NONLINEARITY OF THE SOFT SOIL167 Yong-Seok KIM
SEISMIC EARTH PRESSURE ACTING ON PILE-CAP DURING SOIL LIQUEFACTION BY LARGE-SCALE SHAKING TABLE TEST175 Shuji TAMURA
DEVELOPMENT AND APPLICATION OF AN OBJECT-ORIENTED FRAMEWORK FOR NONLINEAR STRUCTURAL ANALYSIS SOFTWARE183 Bo-Zhou LIN and Keh-Chyuan TSAI
FORMULAS FOR VIBRATION PERIOD OF STEEL BUILDINGS IN TAIWAN DERIVED FROM AMBIENT VIBRATION DATA193 Liang-Jenq LEU, Chuen-Yu LIU, Chang-Wei HUANG, and Shaing-Hai YEH
INTERNET-BASED NUMERICAL ANALYSIS OF STEEL BUILDING FRAME IN COLLABORATION OF FRAME ANALYSIS AND LOCAL BUCKLING ANALYSIS201 Motohide TADA and Katsuki OHGAMI
CAPACITY SPECTRUM METHOD WITH MODE-ADAPTIVE PUSHOVER ANALYSIS207 Hiroshi KURAMOTO
SIMULATION OF DAMAGE PROGRESSION IN LOWER STORIES OF 11-STORY BUILDING

COLUMN CO	OF SHEAR CANNECDTIONS ung CHENG and						·227
	EVALUATIO						-239
J	Chih CHEN, Ch		·	J	FFL CON	NECTIONS	
FOR MOMEN	CE EVALUATI T-RESISTING F Che CHOU, Jui	RAMES					-249
CONNECTION	ESIGN OF INS WITH BOLT Ho LEE and Jac	ED WEB A	TTACHM				·259
	HAVIOR OF X COLUMNS						-269